
C++ Memory Model
Valentin Ziegler

Fabio Fracassi

Meeting C++ Berlin, December 6th, 2014

The machine does not execute the
code you wrote…

2

How your code is executed

3

Code Compiler CPU Cache
void foo(int n, int m)

{

int x=1;

for (

int i=0;

i<n;

++i

){

if (m<0) {

x -= x*m;

}

}

return x;

}

mov esi,1

test ecx,ecx

jle 011F1301

lea ebx,[ebx]

mov eax,1

sub eax,edx

imul esi,eax

dec ecx

jne 011F12F0

...

• Register allocation
• Loop unswitching

• Branch prediction
• Out of order exec.

• Prefetching
• Buffering

000
001
002
003

Memory

010
011
012
013

00C
00D
00E
00F

008
009
00A
00B

004
005
006
007

Optimization
Memory

000
001
222
003

008
999
AAA
00B

00C
00D
00E
00F

004
005
006
007

How your code is executed

Single thread execution model (C++03):

• Program will behave as-if it was yours:
Result is the same as if operations were executed in the
order specified by the program

• We can not observe optimizations performed by the
system

4

Two threads of execution?

• Optimizations become observable

• Optimizations may break “naive” concurrent algorithms

5

f1 = true;

if (!f2) {

// critical section

}

…

Thread #1

f2 = true;

if (!f1) {

// critical section

}

…

Thread #2

bool f1 = false; bool f2 = false;

Memory Model

• Describes the interactions of threads through
memory and their shared use of data.

• Tells us if our program has well defined behavior.

• Constrains code generation for compiler

6

The C++ Memory model

7

C++ Memory Model Basics
Data Races, Sequential Consistency, Synchronization

Meddling with Memory Order
Relaxed Atomic Operations, and subtle Consequences

Data Race

memory location [intro.memory(1.7)/3]
an object of scalar type or a maximal sequence of adjacent
non-zero width bit-fields

conflicting action [intro.multithread(1.10)/4]
two (or more) actions that access the same memory
location and at least one of them is a write

data race [intro.multithread(1.10)/21]
two conflicting actions in different threads and neither
happens before the other.

8

Data Race

memory location [intro.memory(1.7)/3]
an object of scalar type or a maximal sequence of adjacent
non-zero width bit-fields

conflicting action [intro.multithread(1.10)/4]
two (or more) actions that access the same memory
location and at least one of them is a write

data race [intro.multithread(1.10)/21]
two conflicting actions in different threads and neither
happens before the other.

9

int i;

char c;

int a:5,

b:7;

X* p;

Data Race

memory location [intro.memory(1.7)/3]
an object of scalar type or a maximal sequence of adjacent
non-zero width bit-fields

conflicting action [intro.multithread(1.10)/4]
two (or more) actions that access the same memory
location and at least one of them is a write

data race [intro.multithread(1.10)/21]
two conflicting actions in different threads and neither
happens before the other.

10

int i;

char c;

int a:5,

b:7;

X* p;

a = 23;

X* x = p;

int n = i

Thread #1

c = ‘@’;

X* x = p;

i = 42;

Thread #2

Data Race

memory location [intro.memory(1.7)/3]
an object of scalar type or a maximal sequence of adjacent
non-zero width bit-fields

conflicting action [intro.multithread(1.10)/4]
two (or more) actions that access the same memory
location and at least one of them is a write

data race [intro.multithread(1.10)/21]
two conflicting actions in different threads and neither
happens before the other.

11

data race == undefined behavior !

Sequential Consistency

sequential consistency [Leslie Lamport, 1979]

the result of any execution is the same as-if

1. the operations of all threads are executed in some
sequential order

2. the operations of each thread appear in this sequence
in the order specified by their program

12

Sequential Consistency

sequential consistency [Leslie Lamport, 1979]
the result of any execution is the same as-if the operations of all
threads are executed in some sequential order, and the
operations of each thread appear in this sequence in the order
specified by their program

13

13

A

B
C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B C

D



The C++ memory model

Here is the deal:

• We take care our program does not contain data
races

• The system guarantees sequentially consistent
execution

14

sequential consistency for data-race-free programs
SC-DRF

synchronize (the easy way)…

15

std::mutex mtx;

{

mtx.lock();

// access shared data here

mtx.unlock();

}

Locks

Mutually exclusive execution of critical code blocks

Mutex provides inter-thread synchronization:

unlock() synchronizes with calls to

lock() on the same mutex object.

16

std::mutex mtx;

{

mtx.lock();

// access shared data here

mtx.unlock();

}

Locks

Mutually exclusive execution of critical code blocks

Mutex provides inter-thread synchronization:

unlock() synchronizes with calls to

lock() on the same mutex object.

17

Locks

Mutually exclusive execution of critical code blocks

Mutex provides inter-thread synchronization:

unlock() synchronizes with calls to

lock() on the same mutex object.

18

std::mutex mtx;

{

std::lock_guard<std::mutex> lg(mtx);

// access shared data here

// lg destructor releases mtx

}

{

mtx.lock();

PrepareData();

bDataReady=true;

mtx.unlock();

}

Thread #1

{

mtx.lock();

if (bDataReady) {

ConsumeData();

}

mtx.unlock();

}

Thread #2

Synchronize using Locks

std::mutex mtx; bool bDataReady=false;

“Simplistic view” on locking:
Critical code cannot run in both
threads “simultaneously”

19

• The C++ standard identifies certain operations to
be synchronizing operations.

• If A()synchronizes with B(),
then X() happens before Y().

X();

A();

Thread #1

B();

Y();

Thread #2

What about synchronization?

20

std::mutex mtx;

{

mtx.lock();

// access shared data here

mtx.unlock();

}

Locks

Mutual exclusive execution of critical code blocks

Mutex provides inter-thread synchronization:

unlock() synchronizes with calls to

lock() on the same mutex object.

21

{

mtx.lock();

PrepareData();

bDataReady=true;

mtx.unlock();

}

Thread #1

{

mtx.lock();

if (bDataReady) {

ConsumeData();

}

mtx.unlock();

}

mtx.unlock()synchronizes with mtx.lock()
PrepareData() happens before ConsumeData()

Thread #2

Synchronize using Locks

std::mutex mtx; bool bDataReady=false;

22

PrepareData(); // once

{

mtx.lock();

bDataReady=true;

mtx.unlock();

}

Thread #1

bool b;

{

mtx.lock();

b=bDataReady;

mtx.unlock();

}

if (b) ConsumeData();

Proper synchronization,
if PrepareData()is never executed again.

Thread #2

Synchronize using Locks

std::mutex mtx; bool bDataReady=false;

23

?

PrepareData(); // once

{

mtx.lock();

bDataReady=true;

mtx.unlock();

}

Thread #1

if (!mtx.try_lock()){

// l33t optimization:

// thread 1 should

// be done with

// PrepareData :-)

ConsumeData();

}

Thread #2

Clever ?

std::mutex mtx; bool bDataReady=false;

No synchronization.

Data Race!

24

std::atomic<>

• “Data race free” variable, e.g., std::atomic<int>

• (by default) provides inter-thread synchronization:

a store synchronizes with operations that
load the stored value.

• (by default) sequential consistency

• Needs hardware support
(not all platforms provide lock-free atomics)

25

std::atomic<>

• “Data race free” variable, e.g., std::atomic<int>

• (by default) provides inter-thread synchronization:

a store synchronizes with operations that
load the stored value.

• (by default) sequential consistency

• Needs hardware support
(not all platforms provide lock-free atomics)

26

In C++, this is spelled std::atomic,
not volatile !

PrepareData(); // once

bDataReady.store(true);

Thread #1

if(bDataReady.load()){

ConsumeData()

}

Thread #2

Synchronize using atomics

std::mutex mtx; std::atomic<bool> bDataReady(false);

Proper synchronization,
if PrepareData()is never executed again.

27

Excursion: lock-free programming

28

template<typename T> class lock_free_list {

struct node{

T data; node* next;

};

std::atomic<node*> head;

public:

void push(T const& data) {

node* const newNode = new node(data);

newNode->next = head.load();

while(!head.compare_exchange_weak(newNode->next, newNode))

;

}

};

DesiredExpectedTarget

Are we there yet?

Avoid data races and you will be fine
• Synchronize correctly

• Implement lock-free data structures as described in your
favorite computer science text book

The C++ memory model guarantees sequential
consistency

• as does the memory model of Java and C#

29

The C++ Memory model

30

C++ Memory Model Basics
Data Races, Sequential Consistency, Synchronization

Meddling with Memory Order
Relaxed Atomic Operations, and subtle Consequences

std::atomic<>

• “Data race free” variable, e.g., std::atomic<int>

• (by default) provides inter-thread synchronization:

a store synchronizes with operations that
load the stored value.

• (by default) sequential consistency

• Needs hardware support
(not all platforms provide lock-free atomics)

31

Memory Order

Why only have one memory model when we can
have a mix of 3 (and a half)?

32

sequentially
consistent (SC)

acquire-release

relaxed

consume-release

seq_cst

acquire

release

acq_rel

relaxed

consume

release

acq_rel

memory_order_*memory model

*

sequentially
consistent (SC)

acquire-release

relaxed

consume-release

seq_cst

acquire

release

acq_rel

relaxed

consume

release

acq_rel

*

Relaxed memory ordering

33

What is relaxed memory order

• Each memory location has a total modification
order (however, this order cannot be observed directly)

• Memory operations performed by the same thread
on the same memory location are not reordered
with respect to the modification order.

34

std::atomic<int> x;

x.store(42, memory_order_relaxed);

x.load(memory_order_relaxed);

x.compare_exchange_weak(

n, 42, memory_order_relaxed

);

Relaxed load and store

0x.store(1);

x.store(2);

x.load();

x.load();

x.store(4);

x.store(3);

x.load();

M
o

d
if

ic
at

io
n

 O
rd

er

Thread #1 Thread #2x

1

35

Relaxed load and store

0x.store(1);

x.store(2);

x.load();

x.load();

x.store(4);

x.store(3);

x.load();

M
o

d
if

ic
at

io
n

 O
rd

er

Thread #1 Thread #2x



1

36

Relaxed load and store

0x.store(1);

x.store(2);

x.load();

x.load();

x.store(4);

x.store(3);

x.load();

M
o

d
if

ic
at

io
n

 O
rd

er

Thread #1 Thread #2x

1

2

37

Relaxed load and store

0x.store(1);

x.store(2);

x.load();

x.load();

x.store(4);

x.store(3);

x.load();

M
o

d
if

ic
at

io
n

 O
rd

er

Thread #1 Thread #2x

1

2

3

4

38

Relaxed load and store

0x.store(1);

x.store(2);

x.load();

x.load();

x.store(4);

x.store(3);

x.load();

M
o

d
if

ic
at

io
n

 O
rd

er

Thread #1 Thread #2x


1

2

3

4

39

Relaxed load and store

0x.store(1);

x.store(2);

x.load();

x.load();

x.store(4);

x.store(3);

x.load();

M
o

d
if

ic
at

io
n

 O
rd

er

Thread #1 Thread #2x



1

2

3

4

40

Relaxed load and store

0x.store(1);

x.store(2);

x.load();

x.load();

x.store(4);

x.store(3);

x.load();

M
o

d
if

ic
at

io
n

 O
rd

er

Thread #1 Thread #2x

1

2

3

4

41

Safe ?

atomic<bool> f=false;

atomic<bool> g=false;

Thread #1:

f.store(true, memory_order_relaxed);

g.store(true, memory_order_relaxed);

Thread #2:

while(!g.load(memory_order_relaxed));

assert(f.load(memory_order_relaxed));

42

Relaxed load and store

Safe ?

atomic<bool> f=false;

atomic<bool> g=false;

Thread #1:

f.store(true, memory_order_relaxed);

g.store(true, memory_order_relaxed);

Thread #2:

while(!g.load(memory_order_relaxed));

assert(f.load(memory_order_relaxed));

43

ff=true;

g=true;

while(

!g.load()

);

f.load();

Thread #1 Thread #2f

t

f

g

t

Relaxed load and store



Relaxed read-modify-write

0
int oldVal=x.load();

Sets oldVal to 0

x.compare_exchange_weak(

oldVal, // expected

oldVal+1, // desired

memory_order_relaxed);

Returns false
Sets oldVal to 1

x.compare_exchange_weak(

oldVal, // expected

oldVal+1, // desired

memory_order_relaxed);

Returns true

M
o

d
if

ic
at

io
n

 O
rd

er

x

1

lock-free ++x

2

44

Safe? Yes. Progress ?
atomic<int> c = 0

Worker thread #1,#2, …:

for (int i=0; i<100; ++i) {

…

c.fetch_add(1, memory_order_relaxed);

}

Main thread:

start_n_threads();

join_n_threads();

assert(100*n == c);

45





Built-in for
int oldVal=c.load();

while(!c.compare_exchange_weak(

oldVal, // expected

oldVal+1 // desired

memory_order_relaxed

);

Safe? Yes. Progress ? Yes.
atomic<int> c = 0

Worker thread #1,#2, …:

for (int i=0; i<100; ++i) {

…

c.fetch_add(1, memory_order_relaxed);

}

Observing thread (“progress bar”):

for (int old_c = 0;;) {

int c_now = c.load(memory_order_relaxed);

assert(old_c <= c_now);

old_c = c_now;

}

Main thread:

start_n_threads();

join_n_threads();

assert(100*n == c);

46





sequentially
consistent (SC)

acquire-release

relaxed

consume-release

seq_cst

acquire

release

acq_rel

relaxed

consume

release

acq_rel

*

The acquire/release model

47

What does acquire/release mean

• a store-release operation synchronizes with all
load-acquire operations reading the stored value.

• All Operations in the releasing thread preceding the
store-release happen-before all operations
following the load-acquire in the acquiring thread.

48

x.store(42, memory_order_release);

x.load(memory_order_acquire);

Store-relase and load-acquire

0
n=23;

x.store(1);

while(

!x.load()

);

int y=n;

assert(y==23);

Thread #1 Thread #2x

1

int n;

(non-atomic )



49

“Synchronizes with” relation:

• Refers to operations at runtime.

• NOT about statements in the source code!

A note of caution!

0
n=23;

x.store(1);

x.load();

int y=n;

Thread #1 Thread #2x

1

int n;

(non-atomic )

No synchronization.

Data Race!

50

Is the answer 42 ? Yes.

atomic<bool> f=false;

atomic<bool> g=false;

int n;

Thread #1:

n = 42;

f.store(true, memory_order_release);

Thread #2:

while(!f.load(memory_order_acquire));

g.store(true, memory_order_release);

Thread #3:

while(!g.load(memory_order_acquire));

assert(42 == n);

51



sequentially
consistent (SC)

acquire-release

relaxed

consume-release

seq_cst

acquire

release

acq_rel

relaxed

consume

release

acq_rel

*

The consume/release model

52

What does consume mean

• “Light version” of acquire/release

• All Operations in the releasing thread preceding the
store-release happen-before an operation X in the
consuming thread if X depends on the value
loaded.

53

x.store(42, memory_order_release);

x.load(memory_order_consume);

Who has the answer? x->i

struct X { int i; }

int n;

std::atomic<X*> px;

Thread #1:

n = 42;

auto x = new X;

x->i = 42;

px.store(x, memory_order_release);

Thread #2:

X* x;

while(!x=px.load(memory_order_consume));

assert(42 == x->i);

assert(42 == n);

54

Typical examples for “X depends
on the value loaded”

• X dereferences a pointer that
has been loaded

• X is accessing array at index
which has been loaded


 Data Race !

Acquire/release provides very strong guarantees.

Do we still need more?

Who asked for sequential consistency ?

55

Dekker’s algorithm revisited

atomic<bool> f1=false;

atomic<bool> f2=false;

Thread #1:

f1.store(true, memory_order_release);

if (!f2.load(memory_order_acquire)) {

// critical section

}

Thread #2:

f2.store(true, memory_order_release);

if (!f1.load(memory_order_acquire)) {

// critical section

}

56

?

57

f
f1=true;

if (!f2.load()) {

// critical

// section

}

Thread #1 Thread #2f1

t

f

f2

t

f2=true;

if (!f1.load()) {

// critical

// section

}

Dekker’s algorithm revisited

Oh noes!

sequentially
consistent (SC)

acquire-release

relaxed

consume-release

seq_cst

acquire

release

acq_rel

relaxed

consume

release

acq_rel

*

Back to sanity sequential consistency

58

Dekker’s algorithm done right.

atomic<bool> f1=false;

atomic<bool> f2=false;

Thread #1:

f1.store(true, memory_order_seq_cst);

if (!f2.load(memory_order_seq_cst)) {

// critical section

}

Thread #2:

f2.store(true, memory_order_seq_cst);

if (!f1.load(memory_order_seq_cst)) {

// critical section

}

59

• Global, total order of load and store operations

• At any given time, each memory location has only
one value*

* assuming there are no data races

60

Dekker’s algorithm done right.

f
f1=true;

if (!f2.load()) {

}

Thread #1 Thread #2f1

t

f

f2

t
f2=true;

if (!f1.load()) {

}

Use-cases for non-SC atomics

• target platform is ARM (<v8) or PowerPC

• operation counters

• some reference counters
• but then you may use std::shared_ptr

• lazy initialization
• but for this C++ also brings std::call_once

PROFILE FIRST before meddling with memory_order!

61

Wrap up

• Do not write Data Races!

• The C++ Memory Model gives reasonable
guarantees to implement correct, yet performant
algorithms.

• It allows us to deviate from sequential consistency
if we need to.

62

think-cell

Chausseestraße 8/E

10115 Berlin

Germany

Tel +49-30-666473-10

Fax +49-30-666473-19

www.think-cell.com

hr@think-cell.com

http://www.think-cell.com/

Bibliography

• C++ Concurrency in Action – Anthony Williams – 2012

• Atomic Weapons – Herb Sutter – 2012

• Preshing on Programming – Jeff Preshing –
http://preshing.com accessed Dec. 2013

• ISO C++ Working Draft N3337 – 2012

• Foundations of the C++ Concurrency Memory Model –
H. Boehm, S. V. Adve – 2008

• How to make a Multiprocessor Computer that correctly
executes Multiprocess Programs – Leslie Lamport –
1979

64

http://preshing.com/

std::atomic<> on x86/x64

65

load store compare_exchange

memory_order_seq_cst

memory_order_acquire
memory_order_release
memory_order_acq_rel

memory_order_relaxed

MOV
prevent compiler
optimizations

MOV
prevent compiler
optimizations

MOV

(LOCK) XCHG
prevent compiler
optimizations

MOV
prevent compiler
optimizations

MOV

LOCK CMPXCHG
prevent compiler
optimizations

LOCK CMPXCHG
prevent compiler
optimizations

LOCK CMPXCHG

[http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html]

http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

std::atomic<> on ARMv7

66

load store compare_exchange

memory_order_seq_cst

memory_order_acquire
memory_order_release
memory_order_acq_rel

memory_order_relaxed

ldr ; dmb
prevent compiler
optimizations

ldr ; dmb
prevent compiler
optimizations

ldr

dmb ; str ; dmb ;
prevent compiler
optimizations

dmb ; str
prevent compiler
optimizations

str

dmb ; LOOP ; isb
prevent compiler
optimizations

(dmb;) LOOP (;isb)
prevent compiler
optimizations

LOOP

Subroutine LOOP :=
_loop:

ldrex roldval, [rptr];
mov rres, 0; teq roldval, rold;
strexeq rres, rnewval, [rptr];
teq rres, 0; bne _loop

[http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html]

http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

